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Abstract—Drought stress poses a significant threat to global agricultural productivity and food security.
Understanding how plants adapt to drought conditions is crucial for developing drought-resistant crop vari-
eties. Plants have been gifted with adaptation capacity to cope with situations arising from water deficit. Their
capacity to acclimate is featured by adaptive changes in plants. The capacity to capture changes in shoot
architecture has now been enhanced by the advent of non-invasive phenotyping techniques involving various
imaging systems in plant phenomics platforms. These platforms thrive on the assumption that the plant
responses reflected in terms of changes in the structure of the plant that can offer ample scope to employ
machine vision for differentiating the responses of plants to soil-moisture deficit. Further, it is assumed that
the detectable genetic variation in morphological traits responding to soil moisture deficit can provide hints
about a plant’s tolerance to stress and can be exploited to improve crop productivity in drought-prone areas.
Genomic interventions utilizing high throughput phenotyping, make the selection of drought-tolerant geno-
types easier. In recent years, machine vision has emerged as a powerful tool to study and quantify plant
responses to drought stress. This article reviews the current state of knowledge on drought-adaptive responses
in plants and explores the potential of genomic-assisted breeding tools coupled with high-throughput pheno-
typing platforms and machine vision to accelerate the elucidation of genotypic differences in adaptive traits.
We also highlighted its role in deciphering the complex interplay of genotypic variations in drought-adaptive
traits and harnessing artificial intelligence (AI) for machine vision data processing for the transformative
potential in enhancing our understanding of plant responses to drought and expediting the development of
climate-resilient crop varieties.
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INTRODUCTION
Like many terrestrial organisms, plants rely on

water for various cellular-level physiological pro-
cesses, as water within plant cells drives growth and
development [1]. Most plants, including those culti-
vated for food and fiber, absorb water from the soil
through their root systems. Consequently, soil water
deficits resulting from drought can significantly hinder
plant growth by negatively impacting tissue water con-
tent impairing essential cellular activities [2]. Plants
ability to tolerate such soil moisture deficits is crucial
for sustaining crop productivity in drought-prone
regions in the era of climate change. Nevertheless,
translating these scientific findings into observable
traits for distinguishing breeding lines remains elusive,
primarily due to the complexity, time and labor-inten-
sive nature of measuring cellular-level changes [3].

The fundamental alterations occurring at the cel-
lular level, which ultimately manifest as changes in
crop growth, development, and grain yield, hold
immense potential for exploitation by plant breeders.
However, some traits that can enhance grain yield
stability across diverse environmental conditions
may escape from the plant breeder’s eye. Therefore,
recent advancements in imaging systems offer prom-
ising avenues for harnessing the capabilities of
machine vision to detect signals emitted by plants
across various ranges of the electromagnetic spec-
trum, including the visible range, which can be cap-
tured using cameras [4]. These imaging systems have
found extensive applications in various plant phe-
nomics platforms designed to screen large populations
of crop genotypes for variations in their responses to
environmental cues [5].
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Climate resilience traits are complex and are
known to be influenced by component traits. How-
ever, phenotyping of component traits is difficult, and
under such circumstances, high-throughput pheno-
typing platforms make the job of breeders easier. It is
essential to understand that not every observable
change in a plant’s response to soil moisture stress rep-
resents an adaptive trait; many are mere consequences
of stress. Therefore, the success of identifying relevant
plant traits depends on the precision with which
machine-detected observations can be linked to stress
adaptation [6]. This review delves around the recent
advances in imaging technologies in capturing crop
response to moisture deficit and how these tools made
breeder’s task more convenient.

Physiological Manifestation of Shoot System 
Architecture during Soil Moisture Deficit

Escape, avoidance, and tolerance represent crucial
adaptive strategies plants employ in response to
drought stress [7]. Water stress tolerance traits are
integral in maintaining tissue hydrostatic pressure,
primarily achieved through osmotic adjustments [2].
These adjustments arise from synthesizing and accu-
mulating compatible organic solutes in the cytoplasm
and the influx of mineral solutes into vacuoles [8]. The
ability of plants to employ these mechanisms plays a
pivotal role, independently or cooperatively, in mini-
mizing the detrimental effects of water limitations.
Adequate maintenance of cell turgor ultimately influ-
ences leaf shape and overall shoot architecture [1].

Furthermore, it is worth noting that alterations in
leaf temperature may play a pivotal role in regulating leaf
water status under drought stress [9]. Deficit soil mois-
ture stress induces an elevation of abscisic acid (ABA)
levels within plant leaves, which could potentially
compromise the plant’s ability to regulate its tempera-
ture [10]. Structural dynamics and growth patterns,
alterations in transpiration loss via stomatal conduc-
tance adjustments and distribution, leaf rolling, shifts
in root-to-shoot ratios, the accumulation of compati-
ble solutes, improved transpiration efficiency, osmotic
and hormonal regulation, and delayed senescence are
among the manifestations adopted by plants under
conditions of soil moisture deficit [11].

Surrogate Traits to Explain Stress Responses 
in Plant Shoot

The preceding section has elucidated the scientific
insights into adaptive mechanisms that unfold in
response to stress, enabling plants to endure the chal-
lenges posed by soil moisture deficits. Global crop
improvement programs are actively engaged in translat-
ing these scientific findings into genetically enhanced
cultivars. However, many of these adaptive traits pres-
ent significant challenges when integrating them into
crop breeding programs to distinguish responses

among diverse genotypes on a large scale, a prerequi-
site for accurately quantifying genetic variability [12].
Consequently, there is a compelling need for alterna-
tive traits, herein referred to as surrogate traits, that
can facilitate the phenotyping of plant responses to
environmental stressors, such as soil moisture deficits.

Machine vision, a subset of artificial intelligence (AI)
and computer vision, involves the use of cameras and
image analysis algorithms to extract quantitative data
from images [13]. In the context of plant research,
machine vision has proven to be a powerful tool for
high-throughput phenotyping, enabling researchers to
analyze various plant traits quickly and non-destruc-
tively (Fig. 1). This technology can be applied to study a
wide range of traits related to drought adaptation [14].

In the context of plant phenotyping, particularly in
the assessment of plant responses to stresses, including
those induced by soil moisture stress, machine vision
holds great potential. Within the machine vision
domain, a diverse array of imaging systems is harnessed
to capture plant responses automatically, typically within
a framework often referred to as high throughput plant
phenomics [15]. These systems can sense various wave-
lengths within the electromagnetic spectrum, encom-
passing the visible, infrared, and near-infrared ranges.
Specifically, hyperspectral imaging systems are engi-
neered to capture the reflectance characteristics of
objects across different wavelengths, providing valuable
spectral signatures of the observed subjects [16]. Numer-
ous pieces of evidence substantiate the utility of these
advanced imaging systems in unraveling plant responses
to water deficit conditions and, subsequently, leveraging
the phenotype data to identify pertinent genes.

The imaging systems referred to above provide the
true or the false images, which are to be processed with
relevant algorithms to extract the features that can be
used to derive relevant parameters for assessing the
plant responses [17]. When these features consistently
align with stress responses and adaptation, they can
serve as surrogate traits for the efficient screening of a
large number of genotypes [12]. For instance, the area
of plant images captured from various angles using
high-resolution cameras within the visible electro-
magnetic spectrum can unveil biomass, a prevalent
shoot parameter employed for assessing plant stress
responses [18]. Demonstrably, surrogate traits such as
digital volume, representing plant biomass, have been
employed to distinguish plant responses across geno-
types [19]. Alterations in shoot morphology, such as
reductions in leaf size, may be attributed to ceased cell
division, cell elongation, or desiccation-induced roll-
ing or folding, and these changes can also be captured
by imaging systems combined with appropriate algo-
rithms for image analysis [20]. Parameters extracted
from images, such as caliper length, compactness,
eccentricity, and boundary point ratio, can serve as
surrogate indicators elucidating stress-induced mor-
phological changes in plants [21].
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Similarly, indices derived from near-infrared (NIR)
images can facilitate genotype differentiation based on
leaf tissue water content, utilizing surrogate parameters
to reveal relative water content [22]. Further, thermal
imaging systems are commonly used to evaluate a
plant’s ability to regulate canopy temperature [23].
Stress-related indices, extracted from thermal images,
can serve as surrogate traits for distinguishing genotypic
responses to stress. Similarly, the chlorophyll fluores-
cence imaging system is a powerful tool for gaining
insights into vital processes such as photosynthesis [18].
Chlorophyll fluorescence image features hold the
potential to unveil a range of indices elucidating the per-
formance of each key component of the electron trans-
port chain under stress conditions. These indices can
function as surrogate traits for dissecting underlying
stress tolerance mechanisms and identifying critical
components conducive to crop improvement [24].

Furthermore, hyperspectral signatures enable gen-
otype differentiation based on metabolic changes
occurring within plants in response to stress. Indices
derived from hyperspectral reflectance have been
proven effective in elucidating tissue desiccation [22].
Efforts are underway to employ imaging systems to
elucidate variations in reproductive structures, such as
inflorescence and grain morphology, through param-
eters extracted from images [25]. All these advance-
ments in imaging science promise to translate plant
stress’s physiology into practical tools for identifying
traits relevant to plant adaptation in agroecologies
characterized by soil moisture deficits.

Harnessing AI for Machine Vision Data Processing

AI (Artificial Intelligence) and Machine Learning
Algorithms (MLA) play pivotal roles in enhancing our

understanding of drought-adaptive responses in plants
using machine vision. AI and machine learning algo-
rithms are instrumental in researching and developing
drought-resistant crops by facilitating the rapid and pre-
cise analysis of plant responses to drought stress [26].
These technologies accelerate the elucidation of geno-
typic differences in adaptive traits and potentially rev-
olutionize crop breeding strategies for improved food
security in a changing climate [27].

AI, through its ability to process and analyze vast
datasets generated by machine vision systems, enables
the extraction of valuable insights into plant responses
to drought stress. MLAs, particularly deep learning
algorithms, provide the means to discern intricate pat-
terns and relationships within these datasets, thereby
aiding in identifying genotypic differences in adaptive
traits more efficiently, as indicated in Table 1. Such
advances are exemplified in studies like those by [36]
and [37], where AI-driven analysis of plant phenotypic
data has enhanced our understanding of plant responses
to environmental stressors, including drought condi-
tions (Table 2).

Machine vision emerges as an invaluable ally,
bridging the gap between the intricate visual data cap-
tured and the meaningful biological insights derived.
Through the lens of machine vision, the seemingly
ordinary pixels in plant images are transformed into a
treasure trove of information, offering profound
insights into plant responses to drought stress [38].
Through the fusion of imaging technologies, data ana-
lytics, and AI-driven algorithms, machine vision
unlocks the secrets hidden within plant pixels, reveal-
ing phenotypes that serve as key indicators of a plant’s
resilience to drought [39]. This powerful synergy
between pixels and phenotypes exemplifies the trans-
formative potential of machine vision in shaping the

Fig. 1. Image-based phenotyping to determine plant surrogate traits for drought tolerance.
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future of crop improvement, ensuring food security,

and mitigating the impacts of climate change [40].

Amalgamation of High Throughput Phenotyping (HTP) 
and Genomic Assisted Breeding (GAB) 

for Climate Resilience

The rapid development of phenomics has simpli-

fied the phenotyping of traits [46]. High-throughput

phenotyping can effectively bridge the gap between

genomics and phenomics (Fig. 2). In this regard, stud-

ies conducted using high-throughput phenotyping

platforms in mapping the QTLs linked to the shoot

architecture traits are mentioned here.

High throughput screening technique called “Rice

Automatic Phenotyping (RAP)” platform was employed

in maize. A set of 167 RILs was phenotyped employing

the RAP platform from seedling stage to the tasseling

stage at 16 different time intervals. A total of 106 phe-

notypic traits, including 10 plant morphological traits,

22 leaf architecture traits, one plant color trait, three

biomass-related traits, and 64 growth-related traits,

were emphasized. QTL mapping identified a total of

938 QTLs for 42 phenotypic traits recorded at 16 dif-

ferent intervals. The phenotypic variance explained

for each QTL was ranged from 5.5 to 26.6% [47]. This

study emphasizes the importance of HTP platforms in

GAB era. To identify the drought-tolerant barley

accessions a set of 47 accessions was screened and a

Table 1. Significance of AI and MLA across various plant investigations

AI/MLA Application Significance Crops References

Image Segmentation Segmentation of plant images obtained through 

machine vision and isolation of different plant parts 

(e.g., leaves, stems, roots) for further analysis.

Wheat  [26]

Feature Extraction AI/MLA can automatically extract quantitative fea-

tures from plant images, such as leaf area, color, 

texture, and shape, aiding in trait quantification.

Rice, sorghum, barley  [28]

Phenotype Classification Classification of plant phenotypes based on 

drought-related traits, helping to identify genotypic 

differences in adaptive responses.

Cotton, tomato, 

sunflower

 [29, 30]

Trait Quantification Quantification of specific drought-related traits, 

such as stomatal conductance, chlorophyll content, 

or root length, from plant images.

Potato, canola, lentil  [31, 32]

Genotype-Phenotype Asso-

ciation

Identifying genetic markers associated with adaptive 

traits facilitates marker-assisted breeding for 

drought resistance.

Maize, chickpea, 

sugarcane

 [33, 34]

Predictive Modeling Development of predictive models for plant 

responses to drought, aiding in selecting promising 

genotypes for breeding programs.

Sorghum,  [35]

Table 2. Application of AI models for trait estimation in different crops

AI Model Analysis Method
Parameters 

Estimated
Significance Crops References

Convolutional 

Neural Networks 

(CNN)

Image segmentation 

and feature 

extraction

Leaf area, stomatal 

density

Efficiently assesses

drought-induced leaf

changes

Wheat  [41]

Recurrent Neural 

Networks (RNN)

Time series analysis Soil moisture levels Predicts soil water content 

patterns for irrigation

Maize  [42]

Random Forest Hyperspectral

imaging analysis

Chlorophyll content Accurate estimation of plant 

health and stress levels

Cotton,

Potato

 [43, 44]

Long Short-Term 

Memory Networks 

(LSTM)

Time series

prediction

Canopy temperature Predicts plant stress responses 

based on temperature data

Tomato  [45]
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phenotyping platform “The Plant Accelerator” was
employed. The biomass accumulation from the image-
based estimation was highly correlated with the actual
phenotype-based biomass accumulation (r = 0.98),
indicating the usefulness of HTP platforms. Further-
more, a total of 44 QTLs were detected for 11 drought-
tolerance imparting traits. Phenotyping of young
plants using HTP platforms coupled with DNA mark-
ers assists in predicting adult plant performance
during stress [32]. Another study demonstrated by
Ajayi [48] aimed to map the QTLs imparting drought
tolerance in barley in a set of 192 RILs derived by
crossing parents contrasting for drought tolerance
(Otis (R) × Golden Promise (S)). Biotron facility was
employed for rapid generation advancement and short-
term progressive drought was imposed during the head-
ing period. A total of 23 QTLs, of which eight were spe-
cific to shoot dry weight were identified across barley
chromosomes that could be used as an indirect selec-
tion criterion for identifying drought-tolerant lines.

QTL mapping fails significantly in improving poly-
genic traits. An extension of MAS, called Genome
Wide Association Studies (GWAS), which considers
of genome-wide markers that are significantly linked
to the trait of interest [49], is found to be more effec-
tive. A combination of HTP and GWAS can bring
about more success in improving the crops for climate
resilience. Studies conducted using HTP and GWAS
are presented in Table 3.

To further leverage the potential of machine vision
in elucidating genotypic differences in drought adap-
tive traits, a strategic way forward involves integrating
multi-disciplinary expertise [56]. Collaborative efforts
among plant biologists, computer scientists, engi-
neers, and data scientists are essential to refine
machine vision algorithms explicitly tailored to cap-
ture plant responses to drought. The development of
standardized protocols and image analysis pipelines
will enable the reproducibility of results across studies
and institutions. The genomic-assisted breeding has
become robust as phenotyping platforms are highly
effective in accurately measuring climate resilience
traits. Additionally, investments in creating compre-
hensive image databases with diverse genotypes and
controlled drought conditions can serve as valuable
resources for training machine learning models and
improving the accuracy of trait quantification. Fur-
thermore, to ensure the practical applicability of
machine vision in plant breeding programs, efforts
should be made to bridge the gap between research
laboratories and agricultural fields. On-farm valida-
tion of machine vision-based phenotyping tools, cou-
pled with farmer engagement, can facilitate the inte-
gration of this technology into real-world agricultural
practices. The dissemination of user-friendly, cost-
effective, and portable machine vision systems to
breeders and farmers will democratize access to
advanced phenotyping capabilities and empower them
to make informed decisions for selecting drought-

Fig. 2. Combining high throughput phenotyping (HTP) with genomic-assisted breeding (GAB) to enhance climate resilience for
drought.
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resistant crop varieties. In this way, machine vision
along with genomic-assisted breeding, has the poten-
tial to accelerate our understanding of genotypic dif-
ferences in drought-adaptive traits and drive tangible
improvements in crop resilience and food security in
the face of escalating climate challenges.

CONCLUSIONS

The integration of machine vision technology into
the exploration of drought-adaptive responses in
plants represents a significant stride toward expediting

our comprehension of genotypic distinctions in adap-

tive traits. This interdisciplinary approach, merging

biology, computer science, and engineering, has

already demonstrated its prowess in delivering rapid,

precise, and high-throughput phenotyping capabili-

ties. Future endeavors to harness the benefits of imag-

ing systems for trait identification hinge largely on the

optimization of protocols, encompassing image acqui-

sition, processing, and analysis for each imaging sys-

tem. The application of Artificial Intelligence (AI) and

machine learning assumes a pivotal role in managing

and analyzing the substantial volumes of data gener-

Table 3. GWAS integrated with HTP for improving the plant performance

Crops Population used
Phenotyping 

platforms
Traits considered Models used

QTNs or the 

candidate genes 

identified

References

Rice 533 accessions RGB imaging 29 leaf traits

(6 size–related 

traits, 7color–

related traits,

16 shape–related

traits)

Mixed linear 

model (MLM)

73 loci for size-

related traits, 123 

for color related

traits, 177 for

shape related 

traits

 [50]

360 accessions Visible light/RGB 

imaging

Projected shoot 

area

Random regres-

sion model

7 QTLs  [51]

357 accessions RGB imaging Projected shoot 

area

EMMA 442 SNPs  [51]

553 accessions visible light/RGB 

imaging

Relative growth 

rate, transpira-

tion rate,

transpiration use 

efficiency (TUE)

MLM QTL specific 

TUE

 [52]

378 accessions visible light/RGB 

imaging

Projected shoot 

area

Bayesian 

LASSO

regression

model

2 QTNs

(Quantitative 

trait nucleotide)

 [51]

Maize 252 inbreds near-infrared, visi-

ble light/RGB and 

fluorescence

imaging

Plant fresh 

weight, plant dry 

weight, biovol-

ume estimation 

at 11 different

developmental 

stages

MLM 12 MTAs 

(Marker Trait 

Association)

 [53]

Bread

wheat

335–352

genotypes

light detection and 

ranging (LIDAR)

Canopy height, 

average daily 

stem elongation 

rates

MLM 10 MTAs 

for final height, 

3 MTAs for

temperature 

response,

 [54]

Barley 1420 NAM lines RGB imaging 14 growth 

traits related

to drought

tolerance

MLM 3 candidate 

genes

 [55]
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ated within the high-throughput plant phenomics
platform. These technologies are instrumental in
facilitating trait and gene identification for crop
improvement. The amalgamation of advanced imag-
ing techniques with machine learning and data inte-
gration strategies empowers researchers to unearth
novel insights into plant responses to drought stress.
Ultimately, this knowledge can be harnessed to
develop more resilient and productive crop varieties,
contributing to global food security in the face of
changing climate and increasing water scarcity.
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